一、概念

1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质,热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。

QQ截图20200922144935.png

2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用——在热路中产生温度差,形成对热路中两点间指标性的评价。

符号——Rth          单位——℃/W。

稳态热传递的热阻计算:  Rth= (T1-T2)/P

T1——热源温度(无其他热源)(℃)

T2——导热系统端点温度  (℃)

热路中材料热阻的计算:  Rth=L/(K·S)

L——材料厚度 (m)

S——传热接触面积 (m2)

3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所传递的热量。

符号——K or λ         单位—— W/m-K,

QQ截图20200922144957.png

二、热设计的目标

1、  确保任何元器件不超过其最大工作结温(Tjmax)

推荐:器件选型时应达到如下标准民用等级:Tjmax≤150℃       工业等级:Tjmax≤135℃

军品等级:Tjmax≤125℃       航天等级:Tjmax≤105℃

以电路设计提供的,来自于器件手册的参数为设计目标

2、  温升限值

器件、内部环境、外壳:△T≤60℃

器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。

QQ截图20200922145015.png

三、计算

1、  TO220封装+散热器

QQ截图20200922145031.png

结温计算

热路分析

热传递通道:管芯j→功率外壳c→散热器s→环境空气a

注:因Rthca较大,忽略不影响计算,故可省略。

Rthja≈Rthjc+Rthcs+Rthsa≈(T结温-T环温)/P

条件

Rthjc——器件手册查询

Rthcs——材料热阻:Rth绝缘垫=L绝缘垫厚度/(K绝缘垫·S绝缘垫接触c的面积)

Rthsa——散热器热阻曲线图查询

T结温——器件手册查询(待计算数值)

T环温——任务指标中的工作环境要求

P ——电路设计计算

计算

T结温=(Rthjc+Rthcs+Rthsa)·P+T环温<手册推荐结温

注:注意单位统一;判定结温温升限值是否符合。

散热器热阻计算(参见上图)

散热器的热阻一般可在由厂家提供的热阻曲线上标出,也可通过测试得出。

测试

在被测散热器上安装一发热器(or组)件,固定一个风速(M/S),测量进、出风温度,通过计算,得出该条件下的Rthsa。设定一组风速,得出的不同Rthsa值,绘制出该散热器的热阻曲线,不同长度的散热器,可得到不同的曲线。

条件

T进风——进口温度

T出风——相同风速下的出口温度

P——电路设计计算的,发热器(or组)件的功耗

计算Rthsa=(T出风-T进风)/P

 注:亦可根据已有条件,如管芯的△T和功耗,计算出所需散热器的热阻上限,在热阻曲线图上选用足够尺寸的散热器。

2、共用同一散热器(见下图)

QQ截图20200922145107.png

分析

对于散热器而言,总的传热功耗为:

P总=Pj1+Pj2

那么散热器的温升为:

       △T散热器=Rthsa·(Pj1+Pj2)

每只管子的传热路径中,热阻引起的温升为

△Tj1=(Rthjc1+Rthcs1)·Pj1      △Tj2=(Rthjc2+Rthcs2)·Pj2

热路中,所有温升之和加上环境温度就是最大结温,即

 Tjmax1=△Tj1+△T散热器+T环境    

Tjmax2=△Tj2+△T散热器+T环境

条件

Pj1——电路设计计算

Pj2——电路设计计算

Rthjc1——器件手册查询

Rthjc2——器件手册查询

Rthcs1——材料热阻:Rth绝缘垫=L绝缘垫厚度/(K绝缘垫·S绝缘垫接触c的面积)

Rthcs2——材料热阻:Rth绝缘垫=L绝缘垫厚度/(K绝缘垫·S绝缘垫接触c的面积)

Rthsa——散热器热阻曲线图查询

T环境——任务指标中的工作环境要求

计算

J1的最大结温:Tjmax1=(Rthjc1+Rthcs1)·Pj1+Rthsa·(Pj1+Pj2)+T环境

J2的最大结温:Tjmax2=(Rthjc2+Rthcs2)·Pj2+Rthsa·(Pj1+Pj2)+T环境

注: 判定计算出的最大结温,是否小于手册推荐结温;判定结温温升限值是否符合;注意计算时单位要统一。

经验

1、热路的分析和计算,由于影响因素较为复杂,可以忽略一些影响小的参数,来简化计算,但一定要注意影响趋势的方向,是有利于传热的,可以作为设计余量储备,由于影响小,所以不会影响经济性。

2、还是因为影响因素复杂,理论计算是设计指导,结果一定以试验结论判定,埋点测温是最有效的验证方式。

3、电源的热设计是和电路设计密不可分的,实际情况往往因为空间问题,把散热设计到最大化,也就刚刚满足需求,郭鹏学暖通而热路的设计只能截止到外壳,外壳(或散热器)的温度怎么办?这就需要电路设计来降低功耗,甚至和客户讨论如何给电源散热,这就需要我们是否能提的出所有计算数据。

4、关于余量问题,建议只要满足结温和温升限制,即可保证产品工作的可靠性。

5、热设计的装配工艺应符合相应的工艺规范,首先确保装配的难度不大,其次考虑装配的步骤减少,即适应批量的流水装配作业。